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Abstract
In this work the propagation of nonlinear electromagnetic short waves in a
ferromagnetic medium is discussed. It is shown that such waves propagate
perpendicular to the magnetization density. The evolution of the wave under
the influence of perturbations in one transverse dimension is considered; the
asymptotic model equation governing the dynamics is a (2 + 1) generalization
of the well-known sine-Gordon model. We exhibit the line-soliton solution and
study its transverse stability. A numerical study of the model corroborates our
analytical predictions.

PACS numbers: 05.45.Yv, 41.20.Jb, 75.30.Ds

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Wave propagation in ferromagnetic media is well known as a highly nonlinear problem. The
propagation of solitons in such materials has been predicted theoretically [1–3] and observed
experimentally [4–6] for a long time. Theoretical predictions, just as in other nonlinear and
dispersive media, are made through two main types of model equations: long waves and
modulational asymptotic models [7–10].

The latter are wave envelope soliton equations which represent nonlinear modulation of a
wave train. Such nonlinear modulation is worked out by means of the slowly varying envelope
approximation (SVEA), the main assumption of which is that the wave number of the wave
envelope is much smaller than that of the carrier wave. The ratio of these two quantities can be
used as a perturbation parameter in the analysis of the whole equations. SVEA usually leads
in (1 + 1) dimensions to the nonlinear Schrödinger equation (NLS) [11, 12]. The procedure
provides a description of the nonlinear dynamics of the modulation.
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Nevertheless SVEA possesses two serious drawbacks: the first one is that the dynamics
of the wave profile (the carrier wave) itself remains absolutely unknown, and the second one is
that the length of experimentally available wave packets is not always very long with regard to
the carrier’s wave length. So, in addition to the theoretical impossibility of understanding the
wave profile dynamics, we are faced with the fact that SVEA is not always valid in practice.
For example in nonlinear optics the recent development of ultrafast sources has produced
pulses down to two optical cycles [13]. That has led to the development of several models
able to describe wave propagation beyond the SVEA [14, 15].

The purpose of this paper is to investigate theoretically and numerically the dynamics
of a nonlinear electromagnetic short wave profile in a ferromagnetic medium. An analogous
phenomenon has been previously studied in [16] but was restricted to plane waves, i.e.
to (1+1)-dimensional propagation in a bulk medium. The present paper generalizes this
approach to (2+1) dimensions, which can account for volume wave propagation in thick films
or plates. Indeed, if the thickness is large enough, modal dispersion can be neglected, but
if it is not too large, transverse instabilities in the corresponding direction must not be taken
into account. The physical relevance of a (1+1)-dimensional model to account for a (2+1)-
dimensional problem has been verified experimentally in the case of magnetostatic envelope
soliton propagation in yttrium iron garnet films: narrow stripes behave as a one-dimensional
medium [17]. Analogously, a (2+1)-dimensional model can account for a (3+1)-dimensional
problem under the above assumptions.

The present study is carried out using a generalization of a previously introduced method
able to describe asymptotic short-wave dynamics [18, 19]. The paper is organized as follows.
In section 2 we introduce the Landau–Lifschitz and the Maxwell equations governing the
evolution of the electromagnetic wave and the magnetization density in a saturated ferrite.
The analysis of the associated linear dispersion relation shows that this system can propagate
short waves. To tackle the problem of nonlinear short waves, a multiple scale perturbative
method is carried out in section 3 and leads to an asymptotic model equation. The model
generalizes to (2+1) dimensions the universal and completely integrable (1+1) sine-Gordon
equation (which has been found in [16]). This new asymptotic model constitutes the major
result of the paper. The analytical study of its line-soliton solutions is then undertaken in
section 4. We study their transverse stability and find a criterion which depends on the soliton
itself. In section 5 the stability result is then checked numerically. Finally, section 6 is devoted
to some final remarks and open issues.

2. Landau–Lifschitz and Maxwell equations: linear analysis

The system under consideration is a saturated nonconducting ferromagnetic medium where an
electromagnetic wave propagates. The evolution of the magnetic field �H and the magnetization
density �M is governed by two equations: the Landau–Lifschitz and the Maxwell equations.
The Landau–Lifschitz equation reads, under the hypothesis of zero damping

∂t
�M = −γµ0 �M ∧ �H, (1)

where γ is the gyromagnetic ratio and µ0 is the magnetic permeability of the vacuum. The
Maxwell equation reduces to

−�∇( �∇ · �H) + � �H = 1

c2
∂2
t ( �H + �M), (2)

where c = 1/
√

µ0ε0 is the speed of light with ε0 the scalar permittivity of the medium.
Damping in ferromagnetic media is in general small but not negligible. However, it can be
shown that it can be neglected in the present situation; the justification as well as the analysis
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taking damping into account is left for further publication. We neglect inhomogeneous
exchange, since we consider bulk polaritons in a ferromagnet: in this case the wavelengthes
are large with regard to the exchange length. We also assume that the crystalline and
surface anisotropy of the sample can be neglected. The quantities �M, �H, t are rescaled
into c

µ0γ
�M, c

µ0γ
�H , and ct , so that the constants µ0γ

c
and c in equations (1) and (2) are replaced

by 1.
To study the linear regime we look at a small perturbation of a given solution. So we

linearize equations (1) and (2) about the steady state:

�M0 = (m cos ϕ,m sin ϕ, 0), (3)

�H0 = α �M0, (4)

where m is the normalized saturation magnetization, ϕ is the angle between the dominant
propagation direction x and the internal magnetic field, and α represents the strength of the
latter. Then we look for solutions proportional to exp i (kx + ly − ωt):

�M = �M0 + �M1 exp i(kx + ly − ωt) (5)

�H = �H0 + �H1 exp i(kx + ly − ωt), (6)

where �M1 = (
Mx

1 ,M
y

1 ,Mz
1

)
and �H1 = (

Hx
1 ,H

y

1 ,Hz
1

)
are the real vectors, k, l are the wave

numbers in the x, y directions and ω is the frequency. The dispersion relation is

ω2(ω2 − l2 − k2)2 + m2[(1 + α)ω2 − α(k2 + l2)][(l cos ϕ − k sin ϕ)2

− (1 + α)ω2 + α(k2 + l2)] = 0. (7)

The short-wave approximation is possible when the dispersion relation admits an expansion
of the form [18, 19]

ω = a

ε
+ bε + dε3 + f ε5 + · · · , (8)

where a, b, d, f, . . . are the constants and the small parameter ε is linked to the magnitude
of the wavelength through k = k0/ε, which corresponds to short waves. k0 is here some
reference value of the wave number, i.e. k0 = ωr/c, where ωr is the ferromagnetic resonance
frequency. The direction of the wave propagation is assumed to be close to the x-axis, in
such a way that the y variable gives only account of a slow transverse deviation. Therefore l
is assumed to be very small with respect to k, we write l = l0, of order 0 with respect to ε.
Substituting (8) into (7) and solving order by order, we obtain successively

• a = k0

• ϕ = ±π/2,

• b2 − b
( l2

0
k0

+ m2(1+α)

2k0

)
+ l2

0

4k2
0

(
m2α + l2

0

) = 0, which determines b,

• higher order equations which determines d, f, . . . .

The phase up to order ε is thus

1

ε
k0(x − t) + l0y − εbt, (9)

which motivates the introduction of new variables:

ζ = 1

ε
(x − V t), y = y, τ = εt. (10)

The variable ζ allows us to describe the shape of the wave propagating with speed V , it
assumes a short wavelength about 1/ε. The slow time variable τ accounts for the propagation
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at very long time on distances very large with regard to the wavelength. The transverse
variable y has an intermediate scale, as in Kadomtsev–Petviashvili (KP)-type expansions [20].
It was found that ϕ = ±π/2, which means that the short-wave approximation is possible
only if the propagation direction is perpendicular to the magnetization density. Thus the
short-wave approximation is possible when the propagation direction x is perpendicular to
the magnetization density. Ought to the small transverse deviation accounted for by the y

variable, it means physically that the short-wave soliton will propagate in a direction close to
the perpendicular to the magnetization density.

3. Nonlinear analysis: a two-dimensional short-wave equation

Through equation (10), we have put in focus the small scales dynamics in the linear limit.
We now turn to the nonlinear aspect, which constitutes the main purpose of this paper.
Equation (10) allows us to introduce rescaled space and time operators as

∂

∂x
= 1

ε

∂

∂ζ
,

∂

∂y
= ∂

∂y
,

∂

∂t
= −V

ε

∂

∂ζ
+ ε

∂

∂τ
. (11)

The fields �M and �H are expanded in power series of ε as

�M = �M0 + ε �M1 + ε2 �M2 + O(ε3), (12)

�H = �H0 + ε �H1 + ε2 �H2 + O(ε3), (13)

where �M0, �H0, �M1, �H1, . . . are the functions of (ζ, y, τ ). The boundary conditions are

lim
ζ−→−∞

�Hj = lim
ζ−→−∞

�Mj = �0, (14)

for all j � 1, and

lim
ζ−→−∞

�H0 = α lim
ζ−→−∞

�M0 = α


0

m

0


 . (15)

Expansions (12), (13) and operators (11) are substituted into equations (1) and (2) and
solved order by order. At leading order 1/ε2 in (2) and 1/ε in (1), it is found that

• �M0 is uniform,
• Hx

0 = 0,

• H
y

0 and Hz
0 remain free if V = 1.

We consider from now on this value of the velocity V . In physical units, the wave velocity is
thus the speed of light in the medium c.

At order 1/ε, we get

�M1 = m

∫ ζ

−∞
Hz

0 dζ ′�ex, (16)

where �ex denotes the unitary vector in the x direction, and

Hx
1 = −

∫ ζ

−∞

(
∂yH

y

0 + mHz
0

)
dζ ′. (17)

At order ε0,

∂ζ
�M2 =




mHz
1

−Mx
1 Hz

0

−mHx
1 + Mx

1 H
y

0


 (18)
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is computed from equation (1) and used in order to eliminate �M2 from equation (2), which
yields the following conditions:

−∂yH
x
1 + 2∂τH

y

0 + Mx
1 Hz

0 = 0, (19)

∂2
yHz

0 + 2∂ζ ∂τH
z
0 + m∂ζH

x
1 − ∂ζ

(
Mx

1 H
y

0

) = 0. (20)

Using (16) and (17), (19) and (20) reduce to
∫ ζ

−∞
∂2
yH

y

0 dζ ′ + ∂yM
x
1 + 2∂τH

y

0 +
1

m
Mx

1 ∂ζM
x
1 = 0, (21)

−1

m
∂2
y ∂ζM

x
1 − 2

m
∂2
ζ ∂τM

x
1 + m∂yH

y

0 + m∂ζM
x
1 + ∂ζ

(
Mx

1 H
y

0

) = 0. (22)

Equations (21) and (22) yield the sought asymptotic model. We check that the following terms
in the perturbative expansion can be computed, which ensures the validity of the asymptotic.
The question of the effect of higher order terms might rise. In perturbations series associated
with multi-scales methods, they usually correspond to a renormalization of the soliton speed
[21], and therefore we can expect that they will not qualitatively modify the results of the
present paper, at least for evolution times of the order of magnitude considered.

Setting

A = −H
y

0

m
− 1, B = Mx

1

2m
, (23)

X = −m

2
ζ, Y = my, T = mτ, (24)

reduces equations (21) and (22) to

∂X∂T B = AB + ∂2
Y B −

∫ X

∂Y A, (25)

∂X∂T A = −∂X(B∂XB) + ∂2
Y A + ∂X∂Y B, (26)

where
∫ X

f denotes a primitive of f vanishing as X −→ +∞.
When the variations in the y direction are omitted (∂Y = 0), system (25), (26) coincides

with the model derived in [16], which reduces to the sine-Gordon equation. This reduction
cannot be generalized to the present (2+1)-dimensional situation. Some symmetry is recovered
in the system by setting

A = ∂XC, (27)

which reduces system (25), (26) to

CXT = −BBX + CYY + BY , (28)

BXT = BCX + BYY − CY , (29)

where the subscripts denote partial derivatives (i.e. CY = ∂Y C, and so on).
System (28), (29) derives from the following Lagrangian density:

L = 1
2CXCT + 1

2BXBT − 1
2 (CY )2 − 1

2 (BY )2 + CBY + 1
2CXB2, (30)

through
δL
δC

= 0,
δL
δB

= 0. (31)
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4. The soliton and its transverse stability

Neglecting transverse variations, a kink solution of (28), (29) is [16]

B = 2w sech z, C = w(2 tanh z − z), z = (x − wt), (32)

where the velocity w of the kink is an arbitrary real parameter. A more general plane solitary
wave can be deduced from solution (32), as

B = p + 2w sech z, C = w(2 tanh z − z), z = x + py − (w − p2)t, (33)

where p is an arbitrary real parameter. For nonzero p,w does not represent the soliton velocity
any more.

The stability of the line-soliton (32) with respect to slow transverse perturbations is
studied following the approach of [22] for the line-solitons of KP. We introduce a slow
transverse perturbation θ of the variable z and expand the fields in a perturbation series about
the line-soliton as

B = B0 + ηB1 + · · · , C = C0 + ηC1 + · · · , (34)

where η is a small parameter and

B0 = 2w sech z, C0 = w(2 tanh z − z), z = x − wt + θ(ηy, ηt). (35)

The variables ηy, ηt are denoted by Y and T respectively. The expansion is then substituted
into system (28), (29) and solved order by order. At order η0, we get the equations satisfied
by B0 and C0. At order η1, we get

C1z = (γz + 1)θT − βθY + βB1 + κ, (36)

where we have set

β = B0

w
, γ = C0

w
, (37)

and κ is a constant with respect to z. Some attention must be paid to the integration constant.
Indeed, β vanishes quickly as z tends to ±∞, but γ (or C0) does not. Since

γz = 1
2β2 − 1, (38)

we see that γz + 1 goes to zero at infinity. We can assume that C1z vanishes also at infinity,
which yields κ = 0. Substituting expression (36) of C1z into the other equation obtained at
this order yields the following equation for B1:

L · B1 = (
∂2
z + 3

2β2 − 1
)
B1 = (

3
2β2 − 1

)
θY − (β3 − β)θT . (39)

We made use of the relation

βzz = −β3

2
+ β, (40)

which, as (38), follows from the equations at order 0. In order to solve equation (39), we
observe that

L · 1 = 3
2β2 − 1, (41)

L · β = β3, (42)

L · βz = 0, (43)

L · zβz = 2β − β3. (44)
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Thus

B1 = θY + 1
2 (zβz − β)θT . (45)

Then (36) reduces to

C1z = 1
2zββzθT . (46)

At order η2, a first equation yields

C2z = 1

w
C1T − (γ θY )Y − 1

w

∫ z

B1Y +
1

2w
B2

1 + βB2 + K, (47)

where K is a constant with respect to z. Though the adequate modification of K, the notation∫ z
B1Y can hold for any primitive of B1Y . Substituting expression (47) into the second equation

obtained at this order yields

QB2 = Gz, (48)

where the operator Q is defined by

Q = −w∂zL = −w
(
∂3
z + 3

2∂zβ
2 − ∂z

)
, (49)

and

G = −B1zT + B0YY − C1Y + B1C1z + β

[
C1T − w(γ θY )Y −

∫ z

B1Y +
1

2
B2

1 + K

]
. (50)

The adjoint operator QA of Q for the scalar product defined by (f |g) = ∫ +∞
−∞ f (z)g(z) dz is

QA = w
(
∂3
z + 3

2β2∂z − ∂z

)
. (51)

We check using (40) that QAβ = 0, and hence

(β|Gz) = (β|QB2) = (QAβ|B2) = (0|B2) = 0. (52)

The scalar product in (52) is computed using expansion (50). Since β is even and vanishes
quickly at infinity, many terms are zero, and relation (52) reduces to

HθT T + IθYY + JθT Y = 0, (53)

with

H = 1

4

∫ +∞

−∞
β2 dz − 3

16

∫ +∞

−∞
β4 dz,

I = 3w − 1

2

∫ +∞

−∞
β2 dz − 3w

4

∫ +∞

−∞
β4 dz,

J = 1

2

∫ +∞

−∞
β3 dz.

(54)

The integrals are computed using usual methods. We get∫ +∞

−∞
β2 dz = 8,

∫ +∞

−∞
β3 dz = 4π,

∫ +∞

−∞
β4 dz = 64

3
, (55)

and hence

H = −2, I = −4(w + 1), J = 2π. (56)
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Now we look for solutions of (53) of the form θ = exp(iωY + λT ), and

λ = −iωJ ± √
�

2H
, (57)

with

� = ω2(4HI − J 2). (58)

If � is positive, one of the solutions λ has a positive real part, and the solution is unstable. If
� < 0, λ is purely imaginary and no instability occurs. Therefore we see that the line-soliton
is stable if its velocity w is less than

wth = π2

8
− 1, (59)

and unstable for w > wth.

5. Numerical study

We intend to solve numerically the partial differential equations (28) and (29). The numerical
scheme defined by

B(Xj+1, Tj+1) = B(Xj , Tj+1) + B(Xj+1, Tj ) − B(Xj , Tj )

+ δXδT ∂X∂T B(Xj + δX/2, Tj + δT /2), (60)

with Xj = X0 + jδX, Tj = T0 + jδT and so on, allows us to solve the system (28), (29) in
the domain (X � X0, T � T0), for initial data given at (T = T0) and boundary data given
at (X = X0). The problem is that the accuracy of the scheme (60) does not allow us to
go far enough in the propagation of the soliton to observe the instability. Therefore we use
another, more complicated, numerical scheme. We set X0 = 0 and T0 = 0 for simplicity.
First equations (28) and (29) are integrated to yield

CT (X, T ) =
∫ X

0
[CYY (X′, T ) + BY (X′, T )] dX′ − 1

2
B(X, T )2 + Cb

T (T ) +
1

2
Bb(T )2, (61)

BT (X, T ) =
∫ X

0
[CX(X′, T )B(X′, T ) + BYY (X′, T ) − CY (X′, T )] dX′ + Bb

T (T ), (62)

where the boundary data

Bb(T ) = B(X = 0, T ), (63)

Cb(T ) = C(X = 0, T ), (64)

are given. The integro-differential system (61)–(62) together with the initial data

Bi(X) = B(X, T = 0), (65)

Ci(X) = C(X, T = 0), (66)

yield a Cauchy problem. It can be converted to a vectorial system of ordinary differential
equations by semi-discretization in X, and this system can be solved using standard methods.
Regarding the semi-discretization in X, we use the Simpson formula to compute the integrals
and centred three-points finite differences formulae for the derivatives. Care must be taken
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Figure 1. The evolution of the line-soliton in the unstable case. The relative soliton speed is
w = 0.4.

at the ends of the box. The evolution in T is then solved using the classical fourth-order
Runge–Kutta scheme.

The results of the numerical computations are as follows. The initial and boundary data
correspond to a perturbed line-soliton are

Bi(X) = 2w

cosh(X − X1)
, (67)

Ci(X) = w(2 tanh(X − X1) − X + X1), (68)

Bb(T ) = 2w

cosh(−wT − X1)
, (69)

Cb(T ) = w(2 tanh(−wT − X1) + wT + X1), (70)

where

X1 = X0 + 0.2 cos
πy

ym

(71)

describes the perturbation. ym is the half length of the computation box in the y direction,
X0 is the position of the soliton at T = 0 and w is the soliton parameter equal to its relative
velocity in the frame moving at speed V = 1, which is that of light in the medium.

The components of the magnetic field �H are computed from the numerical functions B
and C using expression

�H �

 0

H
y

0

Hz
0


 , (72)

with
H

y

0 = −m(1 + CX), (73)

Hz
0 = −mBX, (74)
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Figure 2. The stable line-soliton after propagation during T = 30. The relative soliton speed is
w = −0.4.

and finite differences formulae. Expressions (74) follow straightforwardly from relations (16),
(24) and (27) in section 3. The transverse instability found analytically in section 4 for
w > π2/8 − 1 is shown in figure 1 in the case w = 0.4. First the deformation of the line-
soliton amplifies, then localized pulses begin to form. Afterwards, they go rapidly far away
from the soliton, which looses almost all its energy through this process. The question wether
stable structures can arise among these pulses, as it is the case for the Kadomtsev–Petviashvili
(KP-I) equation [23], is left for further consideration. Stable propagation is predicted for
w < π2/8 − 1; it is numerically confirmed, as shown in figure 2, in the case w = −0.4.

6. Conclusion

We considered electromagnetic wave propagation in a saturated ferromagnetic dielectric. We
have shown that under the influence of an external magnetic field, (2+1)-dimensional short
electromagnetic waves can propagate. These waves are short along the propagation direction,
which must be in a first approximation perpendicular to the external saturating magnetic field;
they have a larger extension along the transversal direction.

An asymptotic model governing the nonlinear dynamics of the waves has been derived,
it is a (2+1)-dimensional generalization of the completely integrable (1+1)-dimensional sine-
Gordon equation. We give analytic solutions in the form of line-soliton excitations. The
stability of the line-solitons with regard to transverse perturbations has been established both
analytically and numerically. The stability criterion involves the soliton parameters, which
measures both the relative speed of the soliton in the frame moving at the linear group velocity
and its amplitude. The solitons are stable when they travel slower than some critical speed,
which is close to the linear group velocity. Inclusion of damping in system (1), (2) and the
study of the integrability properties of system (28), (29) remain the two more important open
issues of our work. Indeed, the integrability of the (1+1)-dimensional case—the sine-Gordon
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equation—does not allow to us conclude about the integrability of the (2+1)-dimensional
system.
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Fı́sica Téorica-UNESP for hospitality.

References

[1] Zvezdin A K and Popkov A F 1983 Contribution to the nonlinear theory of magnetostatic spin waves Sov.
Phys.—JETP 57 350–5

[2] Bass F G, Nasonov N N and Naumenko O V 1988 Dynamics of a bloch wall in a magnetic field Sov. Phys.—Tech.
Phys. 33 742–8

[3] Leblond H and Manna M 1994 Benjamin–Feir type instability in a saturated ferrite: transition between a
focusing and defocusing regimen for polarized electromagnetic waves Phys. Rev. E 50 2275–86

[4] De Gasperis P, Marcelli R and Miccoli G 1987 Magnetostatic soliton propagation at microwave frequency in
magnetic garnet films Phys. Rev. Lett. 59 481–4

[5] Kalinikos B A, Kovshikov N G and Slavin A N 1990 Experimental observation of magnetostatic wave envelope
solitons in yttrium iron garnet films Phys. Rev. B 42 8658-8660

[6] Slavin A N and Rojdestvenski I V 1994 ‘Bright’ and ‘dark’ spin wave envelope solitons in magnetic films IEEE
Trans. Magn. 30 37–45

[7] Leblond H 1995 Interaction of two solitary waves in a ferromagnet J. Phys. A: Math. Gen. 28 3763–84
[8] Leblond H 1999 Electromagnetic waves in ferromagnets: a Davey–Stewartson type model J. Phys. A: Math.

Gen. 32 7907–32
[9] Leblond H 2002 KP lumps in ferromagnets: a three dimensional KdV–Burgers model J. Phys. A: Math.

Gen. 35 10149–61
[10] Leblond H 2003 A new criterion for the existence of KdV solitons in ferromagnets J. Phys. A: Math.

Gen. 36 1855–68
[11] Infeld E and Rowlands G 1990 Nonlinear Waves, Solitons and Chaos (Cambridge: Cambridge University Press)
[12] Ablowitz H D and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia, PA: SIAM)
[13] Sutter D H, Steinmeyer G, Gallmann L, Matuschek N, Morier-Genoud F, Keller U, Scheuer V, Angelow G and

Tschudi T 1999 Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked ti:sapphire laser
producing pulses in the two-cycle regime Opt. Lett. 24 631–3

[14] Leblond H and Sanchez F 2003 Models for optical solitons in the two-cycle regime Phys. Rev. A 67 013804
[15] Mel’nikov I V, Mihalache D, Moldoveanu F and Panoiu N-C 1997 Quasiadiabatic following of femtosecond

optical pulses in a weakly excited semiconductor Phys. Rev. A 56 1569-1576
[16] Kraenkel R A, Manna M A and Merle V 2000 Nonlinear short-wave propagation in ferrites Phys. Rev.

E 61 976-979
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